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1 Preliminaries

The goal of this work is to describe pointed fusion categories with underlying
cyclic group.

By a tensor category we mean a locally finite rigid C-linear abelian monoidal
category such that the bifunctor ® : C x C — C is bilineal on morphisms and
the unit object 1 is simple. In particular, in a tensor category End¢(1) ~ C. A
fusion category is a semisimple tensor category with finitely many isomorphism
classes of simple objects.

If all simple objects in a fusion category are invertible then it is called pointed
fusion category. Pointed fusion categories are equivalent to fusion categories
Vect¢ of finite dimensional vector spaces graded by a finite group G, with
associativity isomorphism determined by a 3-cocycle w.

The main result in this work gives a classification for categories of the form
Vectz —up to equivalence, where Z,, denotes the cyclic group of order m € N.
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On this section, let C be a tensor category and X an object in C such that there
exists an isomorphism X : X®" =5 1. Note that there exists a constant ¢ € K
such that the diagram

xom+) 049N v oy
A®idl l (1)
1 X — X

commutes. From now on we will call this constant the constant associated to
X, and we denote it by £x. A priory, said constant depends on the choice of
isomorphism X®" =5 1. We have the following lemma.

Lemma 2.1. The constant associated to X does not depend on the choice of
isomorphism X = 1.

Proof. Let A and p be isomorphisms X®" = 1 and &,,¢, € C such that

A@id = 6\ (Id @A),
p®id = ¢,(id®p).



We show that £\ = &,. In fact, by Schur’s Lemma there exists a € K such that
A = ap and thus

p@id = Ey(id@p) = EaH(id @A) = .6 a (A @id) = £, (p @ id).
Hence &) = &,. O
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Lemma 2.2. The constant associated to X is an n' root of unity.

Proof. Fix A : X®* = 1. We are going to compute A ® A in two different
ways. By functoriality of the tensor product, A@ A = X (A ®id®™). We show by
induction on k that A®@ A = f’“)\(id@)k RN\ ® id®(”7k)) for all 1 < k& < n. Since
the diagram (1) commutes, we get that

A= AA®id®™) = eA(id @A @id®" ).

and thus the claim is true for £k = 1. Assume that A ® A = fk)\(id@’k RN ®
id®=%) for 1 < k < n. Applying diagram (1) to id®* @A ® id®™ ) we get
that

1d%F @\ ®id®" R = ¢id®F ! g ® id® k1
and thus by this and the inductive hypothesis
A®@ A = EFAGAZF @A @ id®TR)) = AN (AR @\ @ id® (TR D)),
which is what we wanted. In particular, this implies that
A® A= €A ©)). )

On the other hand, due to the functoriality of the tensor product we have
that
A@ A= A(id®" @N). (3)

Hence by equations (2) and (3) we conclude " = 1. O

Consider now the object X®/ ¢ C for some j € N. Fix an isomorphism
A: X® 2 1. Then we have an isomorphism A®7 : X™ =5 1 and it makes
sense to compute the constant associated to X®/. We arrive to the following
result.

Lemma 2.3. The constant associated to X®7 is exactly §j2.

Proof. Note that by diagram (1)
dY @A = ¢ A @idy @ ®U-D,
Repeating the previous step j — 1 more times we get
1A AT = "2\ @ idd, .

.2
Hence x5 = &% . O
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Let n be a natural number and let Z,, be the cyclic group of order n. Let ( € K
be an nth root of 1. Then (¢ determines a 3-cocyle w¢ on Z, in the following
way
W<(i,j7 k) _ Cl(1+k—n(.7+k) )’

where for an integer m we denote by m’ the remainder of the division of m by
n. Moreover, all 3-cocyles in Z,, modulo coboundaries are of the form w¢ for
some nth root of unity ¢ (see [EGNO, Example 2.6.4]). We denote by Vect%n
the pointed fusion category corresponding to the 3-cocycle we .

For any generator X in the category Vect%n there exists an isomorphism
X®" ~ 1. Hence it makes sense to wonder if the constant associated to a
generator X is an invariant in the category.

Lemma 3.1. The constant associated to a generator X in Vect%n is C.

Proof. Let X be a generator and consider A to be the canonical isomorphism
X®n" ~ 1. Note that in this case the constant ¢ for which the diagram

x o+ 049N v oy

]

1 X — X

commutes is given by the associativity map from X®" ® X to X ® X®".
That is,

n—1 n—1
(k+1—(k+1)")
¢=JJwc by =]]¢ = =¢
k=1 k=1

O

Corollary 3.2. The categories Vect%m and Vect%m are equivalent if and only
if there exists j € {1,--- ,n} such that ged(j,n) =1 and €” = ¢.

Proof. The previous result implies that the constant associated to generators is
in fact an invariant of Vect%n. Fix a generator X in the category Vect%n. Note
that for every j € {1,--- ,n} such that ged(j,n) = 1 we get that X®7 is a also
a generator in Vect%n. If £ denotes the constant associated to X, by Lemma 2.3

the constant associated to X®7 is §j2. The result follows. O

Theorem 3.3. Let m € N and let p1,--- ,px be odd distinct primes such that
m = 2"pi" - -p* for some ng,--- ,ny € N. Then there are a(m) categories of



the form Vect%m up to equivalence, where

kol

(2n; +1) ifng=0
i=1

k
211(2n; +1) ifng=1
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Proof. First, assume m = p* for some prime p and k € N. Consider the action

(Zpk)X — End(Zpk)
I — (a— Pa).

By the previous remark the statement reduces to computing the amount of
orbits of this action.

Let a,b € Z,x. Note that a and b are in the same orbit if and only if there
exists # € (Z,x)* such that a = bmodp*. Hence a and b are in the same
orbit there exists y € (Z,x)* such that a = bmod p*, which is equivalent to
ged(a, p*) = (b, p*) = p' for some | < m.

Define the equivalence classes Hy, - - , Hy, in Z,» where for z € Z,» we have
that € H; if and only if x is divisible by p’ but not by p*!. Then it is
enough to look at the orbits inside each class. Fix ¢ < k. Note that any element
in H; can be written as yp® for some y € (Zpi)*. Let y1p’, yop' € H;, where
Y1,Y2 € (Z,x)*. Then y1p*, y2p' are in the same orbit if and only if there exists

x € (Zpk)X such that
y1p" = 2%y2p’ mod p*. (4)

That is

y1 = 2%y, mod p* "

which is equivalent to

y1y2_1 = 2% mod p*~%.

Hence if Gi_; is the subgroup of quadratic residues of Z,x-: this implies that
the amount of orbits of the action in H; is exactly

Loe—i | Gr—i

for all 0 < i < k. I p is 0dd, |Zy—i/Gei| = 2 for all 0 < i < k, and this
together with the fact that Hy has only one orbit implies that the total amount



of orbits of this action is 2k + 1. On the other hand, if p = 2 then

1 ifi=k—-1
=42 ifi=k—-2
4 if0<i<k-3.

Loi—i | Gr—i

Hence if £ = 1 the action has exactly two orbits, if k& = 2 the action has four
orbits and if k > 3 the action has 4(k — 1) orbits.

T

Finally, for m = 2"°p!'* ... p/'* note that the action
(Zm)* — End(Zy,)
I = (a+ 1%a).
preserves the decomposition
Zm ~ Zgng X Zp;u X oo X Zp:k

and thus the amount of orbits of the action on Z,, is exactly the product of the
amount of orbits of the action restricted to each of the terms Z .. The result

i

follows. 0

Example 3.4. We compute the number of equivalence classes a(m) of categories
of the form Vect%m form € {1,...,10}. We have that

a(l) =1,
a(2) =2,
a(3) =3,
a(4) =4,
a(b) = 3,
a(6) = 6,
a(7) =3,
a(8) =8,
a(9) =5,
a(10) = 6.
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